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Abstract

With the advent of powerful, widely-available mathematical software, combined with
ever-faster computer hardware, we are approaching a day when both the discovery and
proof of mathematical facts can be done in a computer-assisted manner. This article
presents several specific examples of this new paradigm in action.

Kronecker said “In mathematics, I recognize true scientific value only in con-
crete mathematical truths, or to put it more pointedly, only in mathematical
formulas.” I would rather say “computations” than “formulas,” but my view is
essentially the same. — Harold Edwards, Essays in Constructive Mathematics,
2004

All truths are easy to understand once they are discovered; the point is to
discover them. — attributed to Galileo Galilei

1 Introduction

Both of the present authors recall the time when computation was regarded as either
external or irrelevant to research mathematics: “real mathematicians don’t compute.”
But the past 10–15 years has seen an explosion of activity in what is now termed “exper-
imental” mathematics or “computer-assisted” mathematics (henceforth we will use these
terms interchangeably). At least one full-fledged journal, Experimental Mathematics, is
in operation in this specific field, and publications such as Mathematics of Computation
have been publishing related articles for many years. One could argue that the most
persuasive indication that computer-assisted mathematics has reached maturity is that it
is not unusual to see computations mentioned in almost any mathematical journal, even
in very “pure” venues that have no mission to feature computational studies.

Certainly one key driving force in this phenomenon is the development and prolifera-
tion of high-quality commercial software packages such as Wolfram Research’s Mathemat-
ica, Maplesoft’s Maple, and MathWork’s MATLAB. These firms continue to upgrade their
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products with useful packages, such as Maple’s ‘gfun’ (a marvelous tool for manipulating
and discovering generating functions), and valuable online resources, such as Mathemat-
ica’s MathWorld. Numerous other mathematical software facilities are available, often
freely on the Internet, including for instance the Magma algebraic computing package and
the recently announced GraPHedron package for graph theory operations. A listing of
many of these resources is available on the authors’ experimental mathematics website,
http://www.experimentalmath.info.

The other driving force behind the rise of experimental and computer-assisted math-
ematics is, of course, the continuing exponential increase in computer processing power.
Moore’s Law, that remarkable phenomenon wherein the density (and hence processing
power and memory capacity) of semiconductor devices doubles roughly every 18 to 24
months, recently celebrated the 40th anniversary of its original statement by Gordon
Moore [37], and no end is yet in sight. We noted in in 2004 [20, pg. 4], that this 40-year
period of sustained exponential advance has no peer in the history of technology. Since
then, two additional cycles of Moore’s Law have roughly quadrupled processing power
and memory capacity from 2004 levels.

At the present time the computer industry in general (as well as the mathemati-
cal computing world in particular) faces a major challenge of learning to deal with
parallel processing, since the foreseeable trend is for microprocessors to feature mul-
tiple “cores” (processing units) on a single chip [29]. But researchers can take com-
fort that the high-performance scientific computing world has been successfully deal-
ing with parallelism for some time, as attested by the latest mind-boggling achieve-
ments noted in the Top500 list (see http://www.top500.org) and the Gordon Bell Prize
(see http://awards.acm.org/bell). For example, recently an international team of re-
searchers performed a first-principles molecular dynamics computation at 207.3 Tflop/s
(i.e., 207.3 trillion floating-point operations per second), using a 131,072-CPU IBM Blue-
Gene/L computer [33]. Large-scale parallelism has also been employed is some recent
mathematical computing studies. Two such studies by the present authors are [9] and
[11]. But it is fair to say that the development of efficient and user-friendly algorith-
mic tools for highly parallel environments is running far behind the development of the
hardware.

2 Algorithms for Experimentation

The principal algorithms used in experimental and computer-assisted mathematics are
the following:

1. Symbolic computation for algebraic and calculus manipulations.

2. High-precision integer and floating-point arithmetic.

3. High-precision evaluation of integrals and infinite series summation.

4. Integer-relation detection methods, notably the “PSLQ” algorithm.

5. The Wilf-Zeilberger algorithm for proving summation identities.

6. Iterative approximations to continuous functions.

7. Identification of functions based on graph characteristics.

8. Graphics and visualization methods targeted to mathematical objects.
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We will not comment here on most of these techniques, other than to say that, as
detailed in [18, 20, 21, 6, 19] and elsewhere, all are useful in this arena, and numerous
instances of them have been incorporated into commercial symbolic computing packages
such as Mathematica and Maple.

High-precision arithmetic is arguably the most heavily used single technique in this
field. The main driver for this is the fact that integer detection methods (see Section
2.1), which are used to discover new mathematical identities, require very high precision
numerical inputs to obtain numerically meaningful results. Many problems require several
hundred digits of precision; one application required 50,000-digit precision. Computer
implementations of high-precision arithmetic typically represent a high-precision datum
as a string of computer words, where the first few words give the sign, exponent and array
size, and the remaining words contain successive sections of the binary mantissa. A brief
survey of techniques used to perform arithmetic operations on these data structures is
given in [20, pg 218–229].

2.1 Integer relation detection

As mentioned above, the principal driver for the need for very high-precision arithmetic—
other than the sheer challenge—is the pervasive usage of integer relation computations to
find underlying mathematical identities and relationships. In particular, given an n-long
vector of real numbers (xi), which is typically presented as a vector of very-high-precision
numerical values, an integer relation algorithm attempts to find n integers (ai) (if a
nontrivial set exists) such that

a1x1 + a2x2 + · · ·+ anxn = 0.

At the present time, the best-known integer relation algorithm is the “PSLQ” algo-
rithm of Helaman Ferguson. PSLQ was named one of ten “algorithms of the century”
by Computing in Science and Engineering [3]. Although the discovery of PSLQ certainly
ranks as a signal accomplishment, Ferguson at the present time is even better known for
his numerous mathematical-theme sculptures [40]. He sees a clear parallel between PSLQ
and his sculptures—both are “subtractive” processes that reveal an underlying entity. A
detailed statement of the PSLQ algorithm, together with some recently discovered “multi-
level” and “multi-pair” variants of PSLQ, which run significantly faster and are better
suited for parallel processing, are described in [12] and [20, pg. 230–234].

One feature of the PSLQ algorithm is that even if it fails to find a solution, it can
establish that there is no relation (ai) with Euclidean norm less than a certain specified
bound. This is often useful information by itself. It certainly warns one to avoid hunting
for chimeras.

In normal operation of PSLQ on an input vector, the entries of the reduced x vector
gradually decrease in size until at the point of detection, the smallest entry abruptly
drops to the “epsilon” of the multi-precision arithmetic being used. This behavior is
shown in Figure 1, where the size drops by 180 orders of magnitude when the underlying
relation is discovered. The size of this drop can be taken as a “confidence ratio” in the
detection—confidence ratios of 1020 or more almost always indicate a genuine underlying
mathematical relationship rather than an artifact of numerical error.

High-precision arithmetic is required for any nontrivial usage of PSLQ (or any other
integer relation detection algorithm). This is because it can be readily seen that if the
n-long input x vector is known to p-digit precision, then almost certainly there exist
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Figure 1: Plot of log10 min |xi| as a function of iteration number

random d-digit vectors of integers ai such that a1x1 + a2x2 + · · ·+ anxn = 0 (to within an
“epsilon” of 10−p), unless p > nd. In other words, unless the input vector x is specified to
greater than dn-digit precision, and unless arithmetic operations required for the integer
relation detection computation are performed to greater than dn-digit precision, the true
underlying n-long, d-digit relation that one is seeking (if it exists) will be lost in a sea of
spurious numerical artifacts.

Perhaps the best-known application of PSLQ to date is the discovery in 1996 of the
“BBP” formula for π:

π =
∞∑

n=0

1
16n

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This remarkable formula permits one to calculate binary or hexadecimal digits of π be-
ginning at an arbitrary starting position [20, pg. 118–125]. Numerous other “BBP-type”
formulas that also possess this arbitrary digit-calculating property have subsequently been
discovered in a similar manner for constants such as ζ(2) (both binary and ternary), ζ(3)
and Catalan’s constant [4]. Many other experimental math applications of PSLQ are listed
in [20, pg. 50–63] and elsewhere throughout [21, 6], and we will present some additional
examples in this paper.

2.2 Numerical Quadrature

One other computational technique that we will briefly mention here is quadrature (i.e.,
numerical integration) algorithms. While a number of quadrature techniques, including
such venerable methods as Gaussian quadrature, have been applied by us and others in ex-
perimental mathematics, we have found that the little-known “tanh-sinh” scheme of Mori
and Takahashi possesses several notable advantages. These include the ability to produce
high-precision numerical values even for integrand functions with singularities and/or
infinite derivatives at endpoints, and the fact that the cost of computing the requisite
abscissas and weights scales only linearly with the number of evaluation points. For many
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integrand functions of interest, the tanh-sinh scheme exhibits “quadratic convergence”—
doubling the number of evaluation points roughly doubles the number of correct digits in
quadrature results.

The tanh-sinh quadrature scheme transforms the integral of a given function f(x) on
the interval [−1, 1] to an integral on (−∞,∞) using the change of variable x = g(t), where
g(t) = tanh(π/2 · sinh t). Note that g(x) has the property that g(x) → 1 as x → ∞ and
g(x) → −1 as x → −∞, and all derivatives rapidly approach zero for large positive and
negative arguments. Thus one can write, for h > 0,

∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

N∑

j=−N

wjf(xj) + E(h), (1)

where xj = g(hj) and wj = g′(hj), and where N is chosen large enough that |wjf(xj)| < ε
for |j| > N . Here ε = 10−p, where p is the numeric precision level in digits. Because
g′(t) and higher derivatives tend to zero very rapidly for large t, the resulting integrand
f(g(t))g′(t) typically is a smooth bell-shaped function, even if f(t) itself is not well-
behaved at the endpoints. For such bell-shaped integrands on an infinite interval, the
Euler-Maclaurin formula implies that the error E(h) in (1) decreases faster than any
power of h. Additional details are given in [13] and [21, pg. 312–313].

3 Numerical Experimentation

We next present several specific examples of applying these tools in mathematical research.
This is but a brief summary, as literally hundreds of concrete examples could be provided.
This review, parts of which are excerpted from other writings by the present authors,
emphasizes some relatively new examples, which have only recently been published, or (in
at least one case) appear here for the first time.

One application of a high-precision quadrature facility, together with a PSLQ program,
is to evaluate a definite integral in terms of a hypothesized set of analytic terms. As a first
example, the present authors empirically discovered (then rigorously determined) that

2√
3

∫ 1

0

ln6(x) arctan[x
√

3/(x− 2)]
x + 1

dx =
1

81648
[−229635L−3(8)

+29852550L−3(7) ln 3− 1632960L−3(6)π2 + 27760320L−3(5)ζ(3)
−275184L−3(4)π4 + 36288000L−3(3)ζ(5)− 30008L−3(2)π6

−57030120L−3(1)ζ(7)] ,

where

L−3(s) :=
∞∑

n=1

{
1

(3n− 2)s
− 1

(3n− 1)s

}
. (2)

More general results have been conjectured, but (as often is the case), as of yet they are
not all rigorously established [6].

3.1 A Monthly problem

In a very recent application of these methods, the authors addressed problem 11275 in
the February 2007 issue of the American Mathematical Monthly [15], which problem asks

5



to evaluate the iterated integral

G :=
∫ ∞

0

∫ ∞

y

(x− y)2 log((x + y)/(x− y))
xy sinh(x + y)

dx dy.

When this issue of the Monthly arrived in the mail, both of the present authors recognized
that this problem was amenable to experimental methods, and independently began to
work on it. Bailey set out to calculate the original double integral, after making the minor
substitution u = x− y, so that both integrals have constant limits. This effort produced
the numerical result

G = 1.1532659890804730178602752931059938854511244009224435425100...

Bailey tried using the Inverse Symbolic Calculator (ISC), an online numeric constant
recognition tool available at http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html,
but it was not able to recognize this constant.

Meanwhile, Borwein, working in a Maple environment, employed the simple substitu-
tion x = ty to transform the integral into

G =
∫ ∞

0

∫ ∞

1

y(t− 1)2 log((t + 1)/(t− 1))
t sinh(ty + y)

dt dy.

He then interchanged the order of integrals to produce the 1-D integral

G =
π2

4

∫ ∞

1

(t− 1)2(log(t + 1)− log(t− 1))
t(t + 1)2

dt,

which after the substitution t = 1/s yielded

G =
π2

4

∫ 1

0

(s− 1)2(log(1 + s)− log(1− s))
s(1 + s2)

ds.

Now Maple was able to numerically evaluate either form of the single integral integral
(without the external coefficient) as 0.4674011002723397..., and further was able to recog-
nize this constant as π2/4− 2, via the identify function (Mathematica has a Recognize
operator, but it can only find algebraic numbers). Thus, the entire integral was recognized
as

G =
π4

16
− π2

2
(3)

Now that Borwein “knew” the answer, it was a fairly simple matter, still working in a
Maple environment, to “prove” it. This was done by substituting u = (1 − s)/(1 + s) in
the third form above to yield the simple equivalent form

G =
2π2

4

∫ 1

0

u2 log u

u2 − 1
du,

which Maple was able to evaluate analytically to produce the closed-form result, and which
one can do by hand—say by using the geometric series and integrating term-by-term.

In retrospect, it is disappointing that the ISC was not able to recognize the numerical
value of the original integral—evidently this constant lies just outside the search space and
stored values that it works with. The present authors are now planning a research effort to
rework the ISC software. We hope that a future edition will be able to produce the closed-
form evaluation for this problem, using the original numerical value as input. Indeed, the
single Maple instruction identify(1.15326598908047301786027,BasisSizePoly=7);
immediately returns (3).
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Figure 2: Plot of integrand function with singularity

3.2 A quantum field theory integral

Another result is the following, which is equivalent to one found by one of the present
authors (Borwein) and British physicist David Broadhurst [24]:

24
7
√

7

∫ π/2

π/3
ln

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?= L−7(2) = (4)

∞∑

n=0

[
1

(7n + 1)2
+

1
(7n + 2)2

− 1
(7n + 3)2

+
1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
.

This integral arose out of some studies in quantum field theory, in analysis of the volume
of ideal tetrahedra in hyperbolic space. It is the simplest of 998 empirically determined
cases where the volume of a hyperbolic knot complement is expressible in terms of an L-
series and an apparently unexpected integral or sum [24]. The question mark is used here
because although this identity has been numerically verified to 20,000-digit precision, as of
this date no proof is yet known. Note that the integrand function has a nasty singularity
(see Figure 2). This integral was computed using the tanh-sinh quadrature scheme after
first splitting the integral into two parts—the first from π/3 to tan−1

√
7 (the singularity

point), and the second from tan−1
√

7 to π/2.
This computation was performed on 1024 CPUs of the Apple G5 Terascale Computing

Facility at Virginia Tech. By utilizing some advanced techniques to ensure an even com-
putational load among processors, an almost perfect parallel speedup (993 out of 1024)
was ultimately achieved (see Table 1).

PSLQ computations were further able to recover relations among integrals of this type.
Let In be the definite integral of (4), except with limits nπ/24 and (n+1)π/24. Then the
relations

−2I2 − 2I3 − 2I4 − 2I5 + I8 + I9 − I10 − I11
?= 0,

I2 + 3I3 + 3I4 + 3I5 + 2I6 + 2I7 − 3I8 − I9
?= 0 (5)

have been numerically discovered, although as before we have no hint of how to prove this
conjecture.
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CPUs Init Integral #1 Integral #2 Total Speedup
1 190013 1534652 1026692 2751357 1.00

16 12266 101647 64720 178633 15.40
64 3022 24771 16586 44379 62.00

256 770 6333 4194 11297 243.55
1024 199 1536 1034 2769 993.63

Table 1: Run times in seconds for the quadrature in equation (4)

3.3 Ising integrals

Recently the present authors, together with Richard Crandall, were studying the following
classes of integrals, which are related to Ising theory of mathematical physics:

Cn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

Dn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

∏
i<j

(
ui−uj

ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

En :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

∏

i<j

(
ui − uj

ui + uj

)2 du1

u1
· · · dun

un
.

At present, there is no known practical scheme to find multi-hundred-digit values of
general iterated integrals, except for straightforward extensions of 1-D schemes, and these
become impractically expensive beyond 3-D. However, we observed that in the case of the
Cn integrals, we have

Cn =
2n

n!

∫ ∞

0
tKn

0 (t) dt, (6)

where K0(t) denotes the modified Bessel function [1]. This “trick” converts the problem
to a 1-D integral that is amenable to high-precision quadrature using (for instance) the
tanh-sinh quadrature scheme, thus dramatically reducing the computational cost.

We then computed high-precision values (up to 1000 digits) of Cn for selected values of
n, ranging from 3 up to 1024 (corresponding to a 1024-fold iterated integral). With these
numerical values in hand, we were able to find—via PSLQ—and then prove the following
intriguing results [11]: C3 = L−3(2), with notation as in (2), and C4 = 14ζ(3).

Along this line, we noticed that for large n, the numerical values appear to approach
a constant, e.g.,

C10 = 0.63188002414701222229035087366080283...
C40 = 0.63047350337836353186994190185909694...

C100 = 0.63047350337438679612204019271903171...
C200 = 0.63047350337438679612204019271087890...

What is this numerical value? By using the Inverse Symbolic Calculator tool (mentioned
above in Section 3.1), we immediately found our answer:

lim
n→∞Cn = 2e−2γ ,
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where γ is Euler’s constant. We subsequently proved this intriguing numerical discovery
[11], and in doing so discovered the fundamental nature of the Bessel function representa-
tion used in (6). Further research, experimental and theoretical, established the following
results:

D2 = 1/3, D3 = 8 + 4π2/3− 27L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

(In the case of D2, D3, D4, these results were already known by quite different methods.)
The result for E5 required considerable effort, both computational and analytical.

Although in this case we were not able to reduce the integral to a 1-D form, we were
nonetheless able to reduce its dimension by two. The stultifying 3-D integral that re-
sulted from this manipulation is shown in Table 2. As you might imagine, just converting
this expression (originally produced as a Mathematica expression) to a working computer
program required considerable effort. The final numerical evaluation of this integral re-
quired four hours on 64 CPUs of the Virginia Tech Apple system. Applying PSLQ to
the resulting numerical value (together with the numerical values of a set of conjectured
terms), yielded the experimental evaluation shown above. By the way, the plot shown in
Figure 1 is for the PSLQ run that discovered this identity.

Like all good research problems, some generalizations are even more intriguing. To
that end, we also studied the doubly indexed integrals [36]:

Cn,k :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)k+1

du1

u1
· · · dun

un
.

The Cn,k happily can be written in a form like (6). We first computed 1000-digit
numerical values for all n up to 36 and all k up to 75—a total of 2660 individual quadrature
calculations, which were performed independently on a highly parallel computer system.
Using PSLQ, we then discovered linear relations in each of the rows of this array. Some
low-degree examples of these relations are the following:

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8.
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E5 =
∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2

(− [
4(x + 1)(xy + 1) log(2)

(
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2 + 4(y+

1)z + 5)x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z

(
z2 + 4z

+5) y2 + 4
(
z2 + 1

)
y + 5z + 4

)
x3 +

((−3z2 − 4z + 1
)
y2 − 4zy + 1

)
x2 − (y(5z + 4)

+4)x− 1)] /
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+

[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z(

5z2 + 16z + 5
)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(−2z4 + z3 + 2
z2 + z − 2

)
y + 3z3 + 5z2 + 5z + 3

)
x5 + y2

(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)
y3 +

(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)
y + 7z4 − 2z3 − 42z2 − 2z + 7

)
x4 − 2y

(
z3

(
z3

−9z2 − 9z + 1
)
y6 + z2

(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
)
y4 +

(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5

+6z4 − z3 − z2 + 6z + 3
)
y2 − (

9z4 + 14z3 − 14z2 + 14z + 9
)
y + z3 + 7z2 + 7z

+1)x3 +
(
z2

(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)
y + 11z2 + 10z + 11

)
x2 − 2

(
z2

(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x + 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)

+ 15
]
/

[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
]− [

4(x + 1)(y + 1)(yz + 1)
(−z2y4 + 4z(z + 1)y3 +

(
z2 + 1

)
y2

−4(z + 1)y + 4x
(
y2 − 1

) (
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3 − (

z2 + 1
)
y2

+4(z + 1)y + 1)− 1) log(x + 1)] /
[
(x− 1)3x(y − 1)3(yz − 1)3

]− [4(y + 1)(xy

+1)(z + 1)
(
x2

(
z2 − 4z − 1

)
y4 + 4x(x + 1)

(
z2 − 1

)
y3 − (

x2 + 1
) (

z2 − 4z − 1
)

y2 − 4(x + 1)
(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/

[
x(y − 1)3y(xy − 1)3(z−

1)3
]− [

4(z + 1)(yz + 1)
(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1)x2 − 4(y + 1)x− 3
)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x + 1

)
z4+

y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3 +

(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z − 1
)
log(xyz + 1)

]
/

[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]

/
[
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz

Table 2: The E5 integral
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These relations become rather complicated for large n. For n = 24, for example, we found

0 ?= C24,1

−1107296298C24,3

+1288574336175660C24,5

−88962910652291256000C24,7

+1211528914846561331193600C24,9

−5367185923241422152980553600C24,11

+9857686103738772925980190636800C24,13

−8476778037073141951236532459008000C24,15

+3590120926882411593645052529049600000C24,17

−745759114781380983188217871663104000000C24,19

+71215552121869985477578381170258739200000C24,21

−2649853457247995406113355087174696960000000C24,23

+24912519234220575094208313195233280000000000C24,25

By performing some additional analysis on the coefficients of these empirical relations,
we were then led to the following general formulas:

0 = (k + 1)C1,k − (k + 2)C1,k+2

0 = (k + 1)2C2,k − 4(k + 2)2C2,k+2

0 = (k + 1)3C3,k − 2(k + 2)
(
5(k + 2)2 + 1

)
C3,k+2

+9(k + 2)(k + 3)(k + 4)C3,k+4

0 = (k + 1)4C4,k − 4(k + 2)2(5(k + 2)2 + 3)C4,k+2

+64(k + 2)(k + 3)2(k + 4)C4,k+4

0 ?= (k + 1)5C5,k − (k + 2)
(
35k4 + 280k3 + 882k2 + 1288k + 731

)
C5,k+2

+(k + 2)(k + 3)(k + 4)
(
259k2 + 1554k + 2435

)
C5,k+4

−225(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)C5,k+6

0 ?= (k + 1)6C6,k − 8(k + 2)2
(
7k4 + 56k3 + 182k2 + 280k + 171

)
C6,k+2

+16(k + 2)(k + 3)2(k + 4)
(
49k2 + 294k + 500

)
C6,k+4

−2304(k + 2)(k + 3)(k + 4)2(k + 5)(k + 6)C6,k+6,

where again the question mark is used to indicate relations that are not yet formally
established. The proofs of the first two are easy; the second two are harder and relied on
WZ techniques of the type discussed in Section 4 (see also [36]).

In this analysis, we found it useful to define cn,k = n!k!2−nCn,k. Let M be the largest
integer in (n+1)/2. We found (using extensive high-precision polynomial regression) that
all of these recursions can be written in the compact form

M∑

i=0

(−1)i pn,i(k + i + 1) cn,k+2i = 0

for certain relatively simple polynomials pn,i(x). Here are the polynomials for n = 5 and

11



n = 6:
p5,0(x) = x6 p6,0(x) = x7

p5,1(x) = 35x4 + 42x2 + 3 p6,1(x) = x(56x4 + 112x2 + 24)
p5,2(x) = 259x2 + 104 p6,2(x) = x(784x2 + 944)
p5,3(x) = 225 p6,3(x) = 2304x

Thus we have uncovered one more layer of this very interesting “onion” problem that
as yet defies complete understanding. Some additional investigations along this line are
being pursued by ourselves and several colleagues.

3.4 Heisenberg spin integrals

Beginning in late 2006 we investigated the following integrals (“spin integrals”), which
arise, like the Ising integrals, from studies in mathematical physics [16]:

P (n) :=
πn(n+1)/2

(2πi)n
·
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
U(x1 − i/2, x2 − i/2, · · · , xn − i/2)

× T (x1 − i/2, x2 − i/2, · · · , xn − i/2) dx1dx2 · · · dxn

where

U(x1 − i/2, x2 − i/2, · · · , xn − i/2) =

∏
1≤k<j≤n sinh[π(xj − xk)]∏

1≤j≤n in coshn(πxj)

T (x1 − i/2, x2 − i/2, · · · , xn − i/2) =

∏
1≤j≤n(xj − i/2)j−1(xj + i/2)n−j

∏
1≤k<j≤n(xj − xk − i)

.

Note that these integrals involve some complex-arithmetic calculations, even though the
final results are real. So far we have been able to numerically confirm the following results:

P (1) =
1
2

P (2) =
1
3
− 1

3
log 2

P (3) =
1
4
− log 2 +

3
8
ζ(3)

P (4) =
1
5
− 2 log 2 +

173
60

ζ(3)− 11
6

ζ(3) log 2− 51
80

ζ2(3)− 55
24

ζ(5) +
85
24

ζ(5) log 2

P (5) =
1
6
− 10

3
log 2 +

281
24

ζ(3)− 45
2

ζ(3) log 2− 489
16

ζ2(3)− 6775
192

ζ(5)

+
1225

6
ζ(5) log 2− 425

64
ζ(3)ζ(5)− 12125

256
ζ2(5) +

6223
256

ζ(7)

−11515
64

ζ(7) log 2 +
42777
512

ζ(3)ζ(7),

as well as a significantly more complicated expression for P (6). We confirmed P (1)
through P (4) to over 60-digit precision; P (5) to 30-digit precision; and P (6) to 8-digit
precision. These quadrature calculations were performed by means of parallel jobs on the
Apple G5 cluster at Virginia Tech.

Boos and Korepin in [16] and later papers, using a variety of techniques from mathe-
matical physics, conjecture that all P (n) have the form above, namely as sums of products
of alternating zeta functions. The evidence, while attractive, is not overwhelming, since

12



although it seems very likely P (n) is always expressible in terms of multi-zeta values
(MZVs), as discussed in [21, Chap. 3], for weights of eight or higher these MZVs need
not reduce to products of classical zeta functions. We hope that our direct methods will
ultimately be able to confirm or confound the conjecture, although these computations
are a daunting computational challenge due to their high-dimensional nature. In general,
these experiences point to the critical need to develop better schemes for high-precision
multi-dimensional integrals.

3.5 Ramanujan-type series

Some new types of infinite series formulas, based on elliptic integral approximations,
were discovered by Ramanujan around 1910, but these were not well known (nor fully
proven) until quite recently when his writings were fully edited. They are based on elliptic
functions and are described at length in [26]. One of these is the remarkable formula

1
π

=
2
√

2
9801

∞∑

k=0

(4k)! (1103 + 26390k)
(k!)43964k

. (7)

Each term of this series produces an additional eight correct digits in the result. Gosper
used this formula to compute 17 million digits of π in 1985. At about the same time,
David and Gregory Chudnovsky found the following variation of Ramanujan’s formula:

1
π

= 12
∞∑

k=0

(−1)k (6k)! (13591409 + 545140134k)
(3k)! (k!)3 6403203k+3/2

. (8)

Each term of this series produces an additional 14 correct digits. They used this formula
in several large calculations of π, culminating with in 1994 with a calculation to over four
billion decimal digits. Their remarkable story was told in a prizewinning New Yorker
article “The Mountains of Pi” [39].

In a related way, the Ramanujan-type series

1
π

=
∞∑

n=0

((
2n
n

)

16n

)3
42n + 5

16
(9)

allows one to compute the billionth binary digit of 1/π, or the like, without computing the
first half of the series.

In some recent papers, J. Guillera has exhibited several new Ramanujan-style series
formulas for reciprocal powers of π, including the following [30, 32, 31]:

128
π2

=
∞∑

n=0

(−1)nr(n)5(13 + 180n + 820n2)
(

1
32

)2n

(10)

32
π2

=
∞∑

n=0

(−1)nr(n)5(1 + 8n + 20n2)
(

1
2

)2n

(11)

32
π3

=
∞∑

n=0

r(n)7(1 + 14n + 76n2 + 168n3)
(

1
32

)2n

, (12)

where we define the function r(n) as follows:

r(n) =
(1/2)n

n!
=

1/2 · 3/2 · · · · · (2n− 1)/2
n!

=
Γ(n + 1/2)√
π Γ(n + 1)

.
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Guillera proved (10) and (11) using Wilf-Zeilberger’s method described, which we will
discuss more below. He ascribes series (12) to Gourevich who also found it using integer
relation methods. Guillera also provides other series for 1/π2 based on other Gamma
function values as in (7) and (8) but for our experiments we restrict ourselves to series
using r(n).

We have attempted to do a more thorough experimental search for identities of this
general type. In particular, we searched for formulas of either of the two forms

c

πm
=

∞∑

n=0

r(n)2m+1(p0 + p1n + · · ·+ pmnm)α2n (13)

c

πm
=

∞∑

n=0

(−1)nr(n)2m+1(p0 + p1n + · · ·+ pmnm)α2n. (14)

Here c is some integer linear combination of the constants (di, 1 ≤ i ≤ 34):

1, 21/2, 21/3, 21/4, 21/6, 41/3, 81/4, 321/6, 31/2, 31/3, 31/4, 31/6, 91/3,

271/4, 2431/6, 51/2, 51/4, 1251/4, 71/2, 131/2, 61/2, 61/3, 61/4, 61/6,

7, 361/3, 2161/4, 77761/6, 121/4, 1081/4, 101/2, 101/4, 151/2.

The polynomial coefficients (pk, 1 ≤ k ≤ m) in (13) and (14) are each some integer linear
combination of the constants (qi, 1 ≤ i ≤ 11):

1, 21/2, 31/2, 51/2, 61/2, 71/2, 101/2, 131/2, 141/2, 151/2, 301/2.

Note that the linear combination chosen for a given pk may be different from that chosen
for any of the others. The constant α in (13) and (14) is chosen from

1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
√

5− 2, (2−
√

3)2,
5
√

13− 18, (
√

5− 1)4/128, (
√

5− 2)4, (21/3 − 1)4/2, 1/(2
√

2),
(
√

2− 1)2, (
√

5− 2)2, (
√

3−
√

2)4.

This list of α constants was taken from a table on page 172 of [26]. The need for this
smorgasbord is that PSLQ cannot directly handle algebraic numbers, only integers; in
effect we hard-wired a lot of choices into our hunt.

These searches were done using a two-level PSLQ integer relation finding program, with
1000-digit precision. Each selection of m and α constituted one separate integer relation
search. In particular, for a fixed m and α in (13), we calculated the [34 + 11(m + 1)]-long
set of real numbers

d1, d2, · · · , d34,

q0

∞∑

n=0

r(n)2m+1α2n, q1

∞∑

n=0

r(n)2m+1α2n, · · · , , q11

∞∑

n=0

r(n)2m+1α2n,

q1

∞∑

n=0

r(n)2m+1nα2n, q2

∞∑

n=0

r(n)2m+1nα2n, · · · , q11

∞∑

n=0

r(n)2m+1nα2n, · · ·

q1

∞∑

n=0

r(n)2m+1nmα2n, q2

∞∑

n=0

r(n)2m+1nmα2n, · · · , q11

∞∑

n=0

r(n)2m+1nmα2n
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and then applied a two-level PSLQ program, implemented using ARPREC multiple-
precision software, to this vector.

After finding a relation with our program, we carefully checked to ensure that it was
not reducible to another in the list by an algebraic manipulation. Also, in numerous
cases, multiple relations existed. In such cases, we eliminated these one by one, typically
by replacing one of the constants in the relation by an unrelated transcendental and
re-running the program, until no additional relations were found.

The result of this effort is the following list of relations. As it turns out, each of these
are given either implicitly or explicitly in [26] or [32]. But just as important here is the
apparent non-existence of any additional relations. In particular, if a relation is not shown
below for a given α and/or sign choice, that means (as a consequence of our calculations)
that there is no such relation with integer coefficients whose Euclidean norm is less than
1010. So in a very real sense, we had a splendid inductive experience in which we validated
our methods and confirmed the null-hypothesis.

For degree m = 1, with non-alternating signs:

4
π

=
∞∑

n=0

r(n)3(1 + 6n)
(

1
2

)2n

,

16
π

=
∞∑

n=0

r(n)3(5 + 42n)
(

1
8

)2n

,

121/4

π
=

∞∑

n=0

r(n)3(−15 + 9
√

3− 36n + 24
√

3n)
(
2−

√
3
)4n

,

32
π

=
∞∑

n=0

r(n)3(−1 + 5
√

5 + 30n + 42
√

5n)

(
(
√

5− 1)4

128

)2n

,

51/4

π
=

∞∑

n=0

r(n)3(−525 + 235
√

5− 1200n + 540
√

5n)
(√

5− 2
)8n

.

For degree m = 1, with alternating signs:

2
√

2
π

=
∞∑

n=0

(−1)nr(n)3(1 + 6n)
(

1
2
√

2

)2n

,

2
π

=
∞∑

n=0

(−1)nr(n)3(−5 + 4
√

2− 12n + 12
√

2n)
(√

2− 1
)4n

,

2
π

=
∞∑

n=0

(−1)nr(n)3(23− 10
√

5 + 60n− 24
√

5n)
(√

5− 2
)4n

,

2
π

=
∞∑

n=0

(−1)nr(n)3(177− 72
√

6 + 420n− 168
√

6n)
(√

3−
√

2
)8n

.
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For degree m = 2,

8
π2

=
∞∑

n=0

(−1)nr(n)5(1 + 8n + 20n2)
(

1
2

)2n

,

128
π2

=
∞∑

n=0

(−1)nr(n)5(13 + 180n + 820n2)
(

1
32

)2n

.

For degree m = 3,

32
π3

=
∞∑

n=0

r(n)7(1 + 14n + 76n2 + 168n3)
(

1
8

)2n

.

For degree m = 4, 5 we have been unable to find any similar series, with exclusion
bounds roughly 1010 as before, thereby (so far) dashing our hope to find an infinite family
of rational sums extending (9), (10), (11), and (12). More study, however, will certainly
be needed to understand this phenomenon.

3.6 Elliptic and theta function theory

While (10), (11), (12) have no “explanation,” there are tantalizing echoes of the elliptic
theory, described in [26], which explains the series for 1/π as we now partially reprise. We
first define the theta functions θ3, θ4 and θ2

θ2(q) :=
∞∑

n=−∞
q(n+1/2)2 , θ3(q) :=

∞∑
n=−∞

qn2
, θ4(q) :=

∞∑
n=−∞

(−1)n qn2
,

for |q| < 1. We next identify the invariant

kN =
θ2
2

θ2
3

(
e−π

√
N

)
.

We denote the complementary modulus k′ :=
√

1− k2 in terms of which it transpires that
Jacobi’s identity θ4

3 = θ4
4 + θ4

2 (see [26]) implies

k
′
N =

θ2
4

θ2
3

(
e−π

√
N

)
.

For reasons detailed in [21] and [26] we know that for each natural number N , kN is
algebraic. Thus, kN is a wonderful algebraic spray-gun as it is very easy to compute.

For example, k1 = 1/
√

2 = k′1 while k210 is the singular value sent to Hardy in
Ramanujan’s famous 1913 letters of introduction—ignored by two other famous English
mathematicians:

k210 :=
(√

2− 1
)2 (√

3− 2
)(√

7− 6
)2 (

8− 3
√

7
)

×
(√

10− 3
)2 (√

15−
√

14
)(

4−
√

15
)2 (

6−
√

35
)

.

Remarkably,

k100 :=
((

3− 2
√

2
)(

2 +
√

5
)(
−3 +

√
10

)(
−
√

2 + 4
√

5
)2

)2
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arose in Bornemann’s solution to Trefethen’s 10th problem, [18, 19]: it arises in determin-
ing the probability that a Brownian motion starting at the center of a 10× 1 box hits the
ends first is 2/π arcsin (k100).

Ramanujan also noticed that the invariants GN and gN defined next are often simpler

G−12
N := 2kNk′N and g−12

N := 2kN/k
′2
N .

Note that each of these two latter invariants provides a quadratic formula for kN . We
also need Ramanujan’s invariant of the second kind

αN :=
1/π − qθ

′
4(q)/θ4(q)

θ4
3(q)

q := e−π
√

N (15)

which is likewise algebraic for integer N , [26]. In the form we have given them all the
coefficients are very simple and quick to compute numerically. Hence integer relation
methods are easy to apply.

3.6.1 Determining invariants

The following Maple code produces 20 digits of each of our invariants:

que:=N->exp(-Pi*sqrt(N)):
kk:=q->(JacobiTheta2(0,q)/JacobiTheta3(0,q))^2:
kc:=q->(JacobiTheta4(0,q)/JacobiTheta3(0,q))^2: k:=kk@que:
l:=kc@que: G:=1/(2*k*l): g:=2*k/l^2:
alpha:=r->(subs(q=exp(-Pi*sqrt(r)),
(1/Pi-sqrt(r)*4*(q*diff(JacobiTheta4(0,q),q)/JacobiTheta4(0,q)))/
JacobiTheta3(0,q)^4)):
a0:=N->(alpha(N)-sqrt(N)*k(N)^2): a1:=N->sqrt(N)*(1-2*k(N)^2):
b0:=N->alpha(N)/(1-k(N)^2): b1:=N->sqrt(N)*(1+k(N)^2)/(1-k(N)^2):

We first explore use of Maple’s identify function. Entering

for n to 6 do identify(evalf[20](k(n))) od;

returns
1/2

√
2, −1 +

√
2, 1/4

√
6− 1/4

√
2, 3− 2

√
2,

0.11887694580260010118, 0.085164233174742587643.

where we have used only the simplest parameter-free version of the “identify” function.
Correspondingly

for n to 8 do identify(evalf[20](G(2*n-1))) od;

returns for the first seven odd values of G−12
N :

1, 2, 2 +
√

5, 87 + 4
√

3, 4/3
3

√
199 + 3

√
33 +

136
3

1
3
√

199 + 3
√

33
+

22
3

,

18 + 5
√

13, 28 + 12
√

5

and
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for n to 8 do identify(evalf[20](g(2*n))) od;

returns for the first five even values of g−12
N :

1, 1/4
√

2, 3− 2
√

2, 1/4
√
−14 + 10

√
2, 9− 4

√
5

but fails on the next three

0.034675177060507381314, 0.022419012334044683484, 0.014940167059400883091

This can be remedied in many ways. For example,

_EnvExplicit:=true:
(PolynomialTools[MinimalPolynomial](g(14)^(1/3),4));
solve(%)[2]; evalf(%/g(14)^(1/3));

yields 1− 2X − 5X2− 2X3 + X4 as the polynomial potentially satisfied by g−4
14 ; and then

extracts the correct radical

1/2 +
√

2− 1/2
√

5 + 4
√

2

which is confirmed to 15 places. One may check that (g6
14 + g−6

14 )/2 =
√

2 + 1 is an even
simpler invariant. Similarly,

_EnvExplicit:=true:(PolynomialTools[MinimalPolynomial]
(G(25)^(1/12),4));

illustrates that G25 solves x2 − x− 1 = 0 and so is the golden mean, and also shows that
the appropriate power of GN , gN varies with N . Armed with these tools a fine challenge
is to obtain all values of GN , gN or kN up to, say, N = 50.

We may now record two families of series of which Ramanujan discovered many cases,
see [26, p. 182]:

Theorem 1 (Reciprocal Series for Pi) (a) For integer N > 1

1
π

=
∞∑

n=0

r3
n

{
(αN −

√
N k2

N ) + n
√

N(k′2N − k2
N )

} (
G−12

N

)2n
. (16)

(b) For integer N ≥ 1

1
π

=
∞∑

n=0

(−1)n r3
n

{
αN k′−2

N + n
√

N
1 + k2

N

1− k2
N

} (
g−12
N

)2n
. (17)

3.6.2 Identifying our series

We shall now try to determine which cases of Theorem 1 we have recovered. Crude code
to determine the coefficients is:

A:=proc() local N;
N:=args[1]; if nargs>1 then Digits:=args[2] fi;
identify(evalf(G(N))),
identify(evalf(a0(N)))+’n’*identify(evalf(a1(N))) end:

B:=proc() local N;
N:=args[1]; if nargs>1 then Digits:=args[2] fi;
identify(evalf(g(N))),
identify(evalf(b0(N)))+’n’*identify(evalf(b1(N))) end:
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for the non-alternating and alternating cases respectively. For example, B(1) returns√
2, 3n + 1/4 which means that

2
π

=
∞∑

n=0

(−1)n r(n)3(1 + 4n).

We leave it to the reader to see that we had recovered the cases N = 3, 5, 7, 15, 25 of (a)
and N = 4, 6, 10, 18 of (b) in Theorem 1.

4 Computer-Assisted Proof

4.1 The Wilf-Zeilberger algorithm

One fascinating non-numerical algorithm is the Wilf-Zeilberger (WZ) algorithm, which
employs “creative telescoping” to show that a sum (with either finitely or infinitely many
terms) is zero. We will not provide here any details of this remarkable procedure, which is
now available for public usage. Interested readers are referred to the very readable book
by Petkovsek, Wilf and Zeilberger [38]. For most purposes, packages available in Maple
and Mathematica suffice. Some other software implementing these schemes is available
from http://www.cis.upenn.edu/~wilf/progs.html.

4.1.1 A first simple example

As a simple example of the usage of this scheme, we first present a WZ proof of the
whimsical result (1 + 1)n = 2n. This proof is from Doron Zeilberger’s original Maple
program, which in turn is inspired by the proof in [43].

Let F (n, k) =
(
n
k

)
2−n. We wish to show that L(n) =

∑
k F (n, k) = 1 for every n. To

this end, we construct, using the WZ algorithm, the companion function

G(n, k) =
−1

2(n+1)

(
n

k − 1

)(
=

−k

2(n− k + 1)
F (n, k)

)
, (18)

and observe that

F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k). (19)

By applying the obvious telescoping property of these functions, we can write
∑

k

F (n + 1, k)−
∑

k

F (n, k) =
∑

k

(G(n, k + 1)−G(n, k)) = 0, (20)

which establishes that L(n + 1)− L(n) = 0. The fact that L(0) = 1 follows from the fact
that F (0, k) = 1 for k = 0 and is 0 otherwise.

4.1.2 A second harder example

We will briefly present here the proof of the identities (10) and (11), which we repeat here
in slightly different but equivalent forms:

∞∑

n=0

(
4n
2n

)(
2n
n

)4

216n

(
120n2 + 34n + 3

)
=

32
π2

∞∑

n=0

(−1)n
(
2n
n

)5

220n

(
820n2 + 180n + 13

)
=

128
π2

.

19



As we mentioned earlier, these can be and were discovered by a PSLQ-based search
strategy.

Guillera started by defining

G(n, k) =
(−1)k

216n24k

(
120n2 + 84nk + 34n + 10k + 3

) (
2n
n

)4(2k
k

)3(4n−2k
2n−k

)
(
2n
k

)(
n+k

n

)2 .

(21)

He then used the software package EKHAD, which implements the WZ method, obtaining
the companion formula

F (n, k) =
(−1)k512
216n24k

n3

4n− 2k − 1

(
2n
n

)4(2k
k

)3(4n−2k
2n−k

)
(
2n
k

)(
n+k

n

)2 . (22)

Zeilberger’s theorem says that when we define

H(n, k) = F (n + 1, n + k) + G(n, n + k),

then it follows that
∞∑

n=0

G(n, 0) =
∞∑

n=0

H(n, 0),

which in this case is

∞∑

n=0

(
2n
n

)4(4n
2n

)

216n

(
120n2 + 34n + 3

)
=

∞∑

n=0

(−1)n

220n+7

(n + 1)3

2n + 3

(
2n+2
n+1

)4(2n
n

)3(2n+4
n+2

)
(
2n+2

n

)(
2n+1
n+1

)2

+
∞∑

n=0

(−1)n

220n

(
204n2 + 44n + 3

)(
2n

n

)5

=
1
4

∞∑

n=0

(−1)n
(
2n
n

)5

220n

(
820n2 + 180n + 13

)

after considerable algebra.
Guillera then observes that since

∑
n≥0 G(n, k) =

∑
n≥0 G(n, k+1), then by Carlson’s

theorem [14], it follows that
∑

n≥0 G(n, k) = A for some A, independent of k, even if k is
not an integer. We then note that 0 < G(n, t) ≤ 8−n, so one can interchange limit and
sum to conclude that

lim
t→1/2

∞∑

n=1

Re [G(n, t)] = 0.

Thus,

A = lim
t→1/2

Re [G(0, t)] =
32
π2

,

and we have
∞∑

n=0

G(n, k) =
∞∑

n=0

H(n, k) =
32
π2

.
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Guillera’s two results follow immediately.
Obviously, this proof does not provide much insight, since the difficult part of the

result is buried in the construction of (21). In other words, the WZ method provides
“proofs,” but these “proofs” tend to be relatively unenlightening. Nonetheless, the very
general nature of this scheme is of interest; and the method, when it applies, does provide
a certificate of its correctness.

It is worth noting that PSLQ and WZ complement each other very nicely: PSLQ
is very useful for discovering new identities, but seldom provides any hint of how such
results can be formally proved. WZ, on the other hand, is a powerful means to establish
the truth of certain types of series identities, but it provides no suggestion as to how
such identities could be found in the first place. The combination of these two methods
presages a future in which a wide class of related results can be “discovered” and then
“proved” automatically in a computer algebra system. Requisite details and additional
applications of the WZ methodology are given in [38].

4.2 Apéry-like summations

Here we present a detailed case study in identifying sums of a certain class of infinite
series, by means of a multi-step approach that is broadly illustrative of the experimental
methodology in mathematics, and which involves the WZ method in a crucial way. The
origins of this work lay in the existence of infinite series formulas involving central binomial
coefficients in the denominators for the constants ζ(2), ζ(3), and ζ(4). These formulas,
as well the role of the formula for ζ(3) in Apéry’s proof of its irrationality, have prompted
considerable effort during the past few decades to extend these results to larger integer
arguments. The formulas in question are

ζ(2) = 3
∞∑

k=1

1
k2

(
2k
k

) , (23)

ζ(3) =
5
2

∞∑

k=1

(−1)k+1

k3
(
2k
k

) , (24)

ζ(4) =
36
17

∞∑

k=1

1
k4

(
2k
k

) . (25)

Identity (23) has been known since the 19th century, while (24) was variously discovered
in the last century and (25) was noted by Comtet [27, 25, 41].

These results have led many to conjecture that the constant Q5 defined by the ratio

Q5 := ζ(5)
/ ∞∑

k=1

(−1)k+1

k5
(
2k
k

)

is rational, or at least algebraic. However, 10,000-digit PSLQ computations have estab-
lished that if Q5 is a zero of a polynomial of degree at most 25 with integer coefficients,
then the Euclidean norm of the vector of coefficients exceeds 1.24×10383. Similar compu-
tations for ζ(5) have yielded a bound of 1.98×10380. These computations lend substantial
credence to the belief that Q5 and ζ(5) are transcendental.

Given the negative result from PSLQ computations for Q5, the authors of [22] sys-
tematically investigated the possibility of a multi-term identity of this general form for
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ζ(2n + 1). The following were recovered early in experimental searches using computer-
based integer relation tools [22, 23]:

ζ(5) = 2
∞∑

k=1

(−1)k+1

k5
(
2k
k

) − 5
2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j2

, (26)

ζ(7) =
5
2

∞∑

k=1

(−1)k+1

k7
(
2k
k

) +
25
2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j4

(27)

ζ(9) =
9
4

∞∑

k=1

(−1)k+1

k9
(
2k
k

) − 5
4

∞∑

k=1

(−1)k+1

k7
(
2k
k

)
k−1∑

j=1

1
j2

+ 5
∞∑

k=1

(−1)k+1

k5
(
2k
k

)
k−1∑

j=1

1
j4

+
45
4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j6
− 25

4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j4

k−1∑

j=1

1
j2

, (28)

ζ(11) =
5
2

∞∑

k=1

(−1)k+1

k11
(
2k
k

) +
25
2

∞∑

k=1

(−1)k+1

k7
(
2k
k

)
k−1∑

j=1

1
j4

−75
4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j8

+
125
4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1
j4

k−1∑

i=1

1
i4

. (29)

The general formula

∞∑

k=1

1
k(k2 − x2)

=
1
2

∞∑

k=1

(−1)k+1

k3
(
2k
k

) 5k2 − x2

k2 − x2

k−1∏

m=1

(
1− x2

m2

)
(30)

was obtained by Koecher [34] following techniques of Knopp and Schur.
Using bootstrapping and an application of the “Pade” function (which in both Math-

ematica and Maple produces Padé approximations to a rational function satisfied by a
truncated power series), the following remarkable and unanticipated results were pro-
duced [22]:

∞∑

k=1

1
k3(1− x4/k4)

=
5
2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏

m=1

(
1 + 4x4/m4

1− x4/m4

)
. (31)

A decade later, following an analogous—but much more deliberate—experimental-
based procedure, as detailed below, we were able to provide a similar general formula for
ζ(2n + 2) that is pleasingly parallel to (31). It is the following.

Theorem 2 (Even Zeta Values, [10]) Let x be a complex number not equal to a non-
zero integer. Then

∞∑

k=1

1
k2 − x2

= 3
∞∑

k=1

1
k2

(
2k
k

)
(1− x2/k2)

k−1∏

m=1

(
1− 4x2/m2

1− x2/m2

)
. (32)
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Note that the left hand side of (32) is equal to

∞∑

n=0

ζ(2n + 2)x2n =
1− πx cot(πx)

2x2
. (33)

Thus, (32) generates an Apéry-like formulae for ζ(2n) for every positive integer n.
We describe this process of discovery in some detail here, as the general technique

appears to be quite fruitful and may well yield results in other settings.
We first conjectured that ζ(2n + 2) is a rational combination of terms of the form

σ(2r; [2a1, · · · , 2aN ]) :=
∞∑

k=1

1
k2r

(
2k
k

)
N∏

i=1

k−1∑

ni=1

1
n2ai

i

, (34)

where r +
∑N

i=1 ai = n + 1, and the ai are listed in nonincreasing order (note that the
right-hand-side value is independent of the order of the ai). This dramatically reduces the
size of the search space, while in addition the sums (34) are relatively easy to compute.

One can then write
∞∑

n=0

ζ(2n + 2)x2n ?=
∞∑

n=0

n+1∑

r=1

∑

π∈Π(n+1−r)

α(π) σ(2r; 2π) x2n, (35)

where Π(m) denotes the set of all additive partitions of m if m > 0, Π(0) is the singleton
set whose sole element is the null partition [ ], and the coefficients α(π) are complex
numbers. In principle α(π) in (35) could depend not only on the partition π but also on
n. However, since the first few coefficients appeared to be independent of n, we found it
helpful to make the ansatz that the generating function could be expressed in the form
given above.

For positive integer k and partition π = (a1, a2, . . . , aN ) of the positive integer m, let

σ̂k(π) :=
N∏

i=1

k−1∑

ni=1

1
n2ai

i

.

Then

σ(2r; 2π) =
∞∑

k=1

σ̂k(π)
k2r

(
2k
k

) ,

and from (35), we deduce that

∞∑

n=0

ζ(2n + 2)x2n =
∞∑

n=0

n+1∑

r=1

∑

π∈Π(n+1−r)

α(π)σ(2r; 2π)x2n

=
∞∑

k=1

1(
2k
k

)
∞∑

r=1

x2r−2

k2r

∞∑

n=r−1

∑

π∈Π(n+1−r)

α(π) σ̂k(π)x2(n+1−r)

=
∞∑

k=1

1(
2k
k

)
(k2 − x2)

∞∑

m=0

x2m
∑

π∈Π(m)

α(π) σ̂k(π)

=
∞∑

k=1

1(
2k
k

)
(k2 − x2)

Pk(x)
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where

Pk(x) :=
∞∑

m=0

x2m
∑

π∈Π(m)

α(π) σ̂k(π), (36)

whose closed form is yet to be determined. Our strategy, as in the case of (31) [23], was
to compute Pk(x) explicitly for a few small values of k in a hope that these would suggest
a closed form for general k.

Some examples we produced are shown below. At each step we “bootstrapped” by
assuming that the first few coefficients of the current result are the coefficients of the
previous result. Then we found the remaining coefficients (which are in each case unique)
by means of PSLQ computations. Note below that in the sigma notation, the first few co-
efficients of each expression are simply the previous step’s terms, where the first argument
of σ (corresponding to r) has been increased by two. These initial terms (with coefficients
in bold) are then followed by terms with the other partitions as arguments, with all terms
ordered lexicographically by partition (shorter partitions are listed before longer parti-
tions, and, within a partition of a given length, larger entries are listed before smaller
entries in the first position where they differ; the integers in brackets are nonincreasing):

ζ(2) = 3
∞∑

k=1

1(
2k
k

)
k2

= 3σ(2, [0]), (37)

ζ(4) = 3
∞∑

k=1

1(
2k
k

)
k4
− 9

∞∑

k=1

∑k−1
j=1 j−2

(
2k
k

)
k2

= 3σ(4, [0])− 9σ(2, [2]) (38)

ζ(6) = 3
∞∑

k=1

1(
2k
k

)
k6
− 9

∞∑

k=1

∑k−1
j=1 j−2

(
2k
k

)
k4

− 45
2

∞∑

k=1

∑k−1
j=1 j−4

(
2k
k

)
k2

+
27
2

∞∑

k=1

k−1∑

j=1

∑k−1
i=1 i−2

j2
(
2k
k

)
k2

, (39)

= 3σ(6, [])− 9σ(4, [2])− 45
2

σ(2, [4]) +
27
2

σ(2, [2, 2]) (40)

ζ(8) = 3σ(8, [])− 9σ(6, [2])− 45
2

σ(4, [4]) +
27
2

σ(4, [2, 2])− 63σ(2, [6])

+
135
2

σ(2, [4, 2])− 27
2

σ(2, [2, 2, 2]) (41)

ζ(10) = 3σ(10, [])− 9σ(8, [2])− 45
2

σ(6, [4]) +
27
2

σ(6, [2, 2])− 63σ(4, [6])

+
135
2

σ(4, [4, 2])− 27
2

σ(4, [2, 2, 2])− 765
4

σ(2, [8]) + 189σ(2, [6, 2])

+
675
8

σ(2, [4, 4])− 405
4

σ(2, [4, 2, 2]) +
81
8

σ(2, [2, 2, 2, 2]). (42)

Next from the above results, one can immediately read that α([ ]) = 3, α([1]) = −9,
α([2]) = −45/2, α([1, 1]) = 27/2, and so forth. Table 3 presents the values of α that we
obtained in this manner.

Using these values, we then calculated series approximations to the functions Pk(x),
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Partition Alpha Partition Alpha Partition Alpha
[empty] 3/1 1 -9/1 2 -45/2
1,1 27/2 3 -63/1 2,1 135/2
1,1,1 -27/2 4 -765/4 3,1 189/1
2,2 675/8 2,1,1 -405/4 1,1,1,1 81/8
5 -3069/5 4,1 2295/4 3,2 945/2
3,1,1 -567/2 2,2,1 -2025/8 2,1,1,1 405/4
1,1,1,1,1 -243/40 6 -4095/2 5,1 9207/5
4,2 11475/8 4,1,1 -6885/8 3,3 1323/2
3,2,1 -2835/2 3,1,1,1 567/2 2,2,2 -3375/16
2,2,1,1 6075/16 2,1,1,1,1 -1215/16 1,1,1,1,1,1 243/80
7 -49149/7 6,1 49140/8 5,2 36828/8
5,1,1 -27621/10 4,3 32130/8 4,2,1 -34425/8
4,1,1,1 6885/8 3,3,1 -15876/8 3,2,2 -14175/8
3,2,1,1 17010/8 3,1,1,1,1 -1701/8 2,2,2,1 10125/16
2,2,1,1,1 -6075/16 2,1,1,1,1,1 729/16 1,1,1,1,1,1,1 -729/560
8 -1376235/56 7,1 1179576/56 6,2 859950/56
6,1,1 -515970/56 5,3 902286/70 5,2,1 -773388/56
5,1,1,1 193347/70 4,4 390150/64 4,3,1 -674730/56
4,2,2 -344250/64 4,2,1,1 413100/64 4,1,1,1,1 -41310/64
3,3,2 -277830/56 3,3,1,1 166698/56 3,2,2,1 297675/56
3,2,1,1,1 -119070/56 3,1,1,1,1,1 10206/80 2,2,2,2 50625/128
2,2,2,1,1 -60750/64 2,2,1,1,1,1 18225/64 2,1,1,1,1,1,1 -1458/64
1,1,1,1,1,1,1,1 2187/4480

Table 3: Alpha coefficients found by PSLQ computations
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by using formula (36). We obtained:

P3(x) ≈ 3− 45
4

x2 − 45
16

x4 − 45
64

x6 − 45
256

x8 − 45
1024

x10 − 45
4096

x12 − 45
16384

x14

− 45
65536

x16

P4(x) ≈ 3− 49
4

x2 +
119
144

x4 +
3311
5184

x4 +
38759
186624

x6 +
384671
6718464

x8

+
3605399

241864704
x10 +

33022031
8707129344

x12 +
299492039

313456656384
x14

P5(x) ≈ 3− 205
16

x2 +
7115
2304

x4 +
207395
331776

x6 +
4160315
47775744

x8 +
74142995

6879707136
x10

+
1254489515

990677827584
x12 +

20685646595
142657607172096

x14 +
336494674715

20542695432781824
x16

P6(x) ≈ 3− 5269
400

x2 +
6640139
1440000

x4 +
1635326891
5184000000

x6 − 5944880821
18662400000000

x8

− 212874252291349
67184640000000000

x10 − 141436384956907381
241864704000000000000

x12

− 70524260274859115989
870712934400000000000000

x14 − 31533457168819214655541
3134566563840000000000000000

x16

P7(x) ≈ 3− 5369
400

x2 +
8210839
1440000

x4 − 199644809
5184000000

x6 − 680040118121
18662400000000

x8

− 278500311775049
67184640000000000

x10 − 84136715217872681
241864704000000000000

x12

− 22363377813883431689
870712934400000000000000

x14 − 5560090840263911428841
3134566563840000000000000000

x16.

With these unappetizing approximations in hand, we were nonetheless in a position
to attempt to determine better closed-form expressions for Pk(x). This can be done by
using the “Pade” function in either Mathematica or Maple. We obtained the following:

P1(x) ?= 3

P2(x) ?=
3(4x2 − 1)
(x2 − 1)

P3(x) ?=
12(4x2 − 1)

(x2 − 4)

P4(x) ?=
12(4x2 − 1)(4x2 − 9)

(x2 − 4)(x2 − 9)

P5(x) ?=
48(4x2 − 1)(4x2 − 9)

(x2 − 9)(x2 − 16)

P6(x) ?=
48(4x2 − 1)(4x2 − 9)(4x2 − 25)

(x2 − 9)(x2 − 16)(x2 − 25)

P7(x) ?=
192(4x2 − 1)(4x2 − 9)(4x2 − 25)

(x2 − 16)(x2 − 25)(x2 − 36)
.

These results immediately suggest the general form of a generating function identity:

∞∑

n=0

ζ(2n + 2)x2n ?= 3
∞∑

k=1

1(
2k
k

)
(k2 − x2)

k−1∏

m=1

4x2 −m2

x2 −m2
, (43)
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which is equivalent to (32).
We next confirmed this result in several ways:

1. We symbolically computed the power series coefficients of the LHS and the RHS of
(43), and verified that they agree up to the term with x100.

2. We verified that Z(1/6), where Z(x) is the RHS of (43), agrees with 18 − 3
√

3π,
computed using (33), to over 2,500 digit precision; likewise for Z(1/2) = 2, Z(1/3) =
9/2− 3π/(2

√
3), Z(1/4) = 8− 2π and Z(1/

√
2) = 1− π/

√
2 · cot(π/

√
2).

3. We then affirmed that formula (43) gives the same numerical value as (33) for the
100 pseudorandom values {mπ}, for 1 ≤ m ≤ 100, where {·} denotes the fractional
part.

Thus, we were certain that (32) was correct and it remained only to find a proof. The
first component was to show, as anticipated, that (32) was equivalent to a finite identity.
Indeed, in terms of the generalized hypergeometric series

3F2

(
3n, n + 1,−n

2n + 1, n + 1/2

∣∣∣∣
1
4

)
:=

n∑

k=0

(3n)k(n + 1)k(−n)k

(2n + 1)k(n + 1/2)k
· (1/4)k

k!
=

(
2n
n

)
(
3n
n

) , (44)

we showed (32) was equivalent to (44) holding for all integer n > 0. Here for non-negative
integers k and any a, (a)k :=

∏k
j=1(a + j − 1) = Γ(a + k)/Γ(a) is the usual Pochhammer

symbol. This can been done (easily in this case) by applying the Wilf-Zeilberger method
as implemented in Maple. See [10] for details. A human proof of (44) would be welcome,
though there is no a prior reason why such a proof must exist!

4.3 Another integral in search of a proof

Before concluding, we wish to mention that Glasser and Oloa recently discovered the
following integral evaluation based on an exploration of integrals of Wronskians [42]:

∫ π

0

y2

y2 + 4 ln2
(
2 cos y

2

)dy
?=

π

4
(1− γ) +

π

4
ln (2 π) = 1.7755193128079 . . .

At the time of this web posting, they had no rigorous proof of this identity, but we
were able to quickly confirm that it holds to 1,000 decimal digits, on using the tanh-sinh
quadrature algorithm to evaluate the left-hand-side. Thus, while the identity here was
hardly in serious doubt, we had neither a computer nor a human proof (although the
discoverers may well have written down one by now, and Dante Manna has recently found
an elegant derivation [28]). Figure 3 shows the integrand in (45).

The 1,000 digit computation of this integral required 290 seconds (not including ini-
tialization) on a single CPU of an IBM Power3 system, a 5-year-old technology. By
comparison, this same calculation required only 74 seconds on a single CPU of the more
recent Apple G5. The very latest systems are faster still, even on single CPUs, and feature
multiple processing cores. Moore’s law still obtains.

5 Caveat Emptor

Despite all of these remarkable advances, we issue a final caveat: seemingly compelling
patterns can mislead, and thus caution must be exercised in all conclusions based on such
patterns.
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Figure 3: Plot of the Glasser-Oloa integrand with a vertical tangent at π

As a single instance, it was discovered by Robert Baillie [2], after reading [21, §2.5],
that for N = 1, 2, 3, 4, 5, and 6 (but not 7),

∞∑

n=1

sincN (n) = −1
2

+
∫ ∞

0
sincN (x) dx. (45)

Numerous other examples could be cited—see for instance [5, pg. 511–512]. These are
cautionary examples of that perennial issue of inductive mathematics: When is enough
evidence enough?

6 Conclusion

With the increasing numbers of computational papers being published in the field, it is
clear that “experimental” or “computer-assisted” mathematics is truly emerging as an
important new paradigm in mathematical research. One aspect of this discipline that is
particularly encouraging is its democratic nature.

For one thing, because the objects typically studied in this arena are typically rather
basic and concrete, researchers of a wide range of backgrounds can participate. Recent
contributions of note have been made by undergraduates, senior researchers, and also
computer scientists and mathematical physicists. The only essential prerequisite is a
reasonably good facility with computation of one sort or another.

What’s more, the results of these computations are also democratizing, because with
the numerical results in hand, researchers who are not specialists in the computational
techniques involved can utilize these results in research. This was driven home to the
present authors recently when one of us sent to Richard Crandall a numerical value we
obtained for the constant P (3) mentioned in Section 3.4 above. He in turn emailed
the value to Aaron Goldberg, a graduate research assistant, who by means of an Internet
search found a mathematical physics paper ([17]) that discussed this constant. We already
knew about this paper, but Goldberg found it by himself without guidance.

The democratizing nature of computational mathematics was also noted in press re-
ports of the recent computation of the representations for the symmetry group E8 [8].
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This computation, by the way, produced a square matrix of coefficients 453,060 on a side,
with 205,263,363,600 entries. It is part of a project started by Jeffrey Adams of the Uni-
versity of Maryland to create an “Atlas of Lie Groups and Representations,” as an aid
researchers in the field. Adams noted that the computation is like the “genome” for E8.
“It’s all of the information you need to understand E8 and its representations.”

So where will all this lead? As we emphasized in the introduction, numerous useful and
impressive mathematical software packages are now available (for free!) on the Internet.
And this is in addition to commercial packages, such as Mathematica and Maple, which
grow more powerful and reliable with each new release. Further, Moore’s Law shows no
sign of abating. If anything, some of the astonishing new developments in the field of
nanotechnology (see for instance [35]) suggest that the current rapid pace of advancement
might even accelerate somewhat in the coming years.

So imagine a future when high-dimensional integrals can routinely be evaluated to
hundreds or thousands of digits of precision. Perhaps then we could make rapid progress
on the Boos-Korepin conjecture of Section 3.4. Or imagine a future when hundreds
or thousands of candidate terms can routinely be incorporated into an integer relation
calculation, thus permitting a much broader search of possible terms for analytic evalu-
ation. Or imagine the time when an enormous computation of scope comparable to the
above-mentioned E8 calculation, which today required three days of processing on a large
computer cluster (not to mention the many hours of programming and preparation), could
be dispatched in an hour or two on an individual researcher’s desktop system. Even more
importantly, imagine a future when many thousands of mathematicians are completely
fluent in using these (and even more powerful, yet-to-be-developed) computer-based tools
in their research work.

That future is coming! Indeed, as the novelist William Gibson—who named cyber-
space years before he owned a computer—declared in 1999, “The future is already here.
It’s just not very evenly distributed.”
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